"Hands-on" As a naturalistic data collection method

Jared Thomas, Darren Walton, Steven Murray, Martin Fourie

Contact Information: Central Laboratories

Opus International Consultants

jared.thomas@opus.co.nz

- Background: Monitoring road safety
 - Reactive vs Proactive measurement
 - Intermediate outcome measures
- The "Hands-on" measure
 - Reliability of the measure
 - Recent applications Delineation
- Potential implications for road safety
 - Self-explaining roads
- Real-time speed feedback and driver behaviour
 - Intelligent Speed Adaptation

- Intermediate outcome measures
 - Offer timely feedback on road safety solutions
- Speed most recognised
 - Sensitive to changes in driving environment
- Steering wheel grasp links to emergency control over the vehicle
 - e.g. Tyre blowout simulation (Sanders, 1981; Kline, 2001)

Naturalistic measure examples						
Speed						
Headway (to next vehicle)						
Steering wheel reversals						
Lane position maintenance						
Gap size acceptance (when pulling into traffic)						
Overtaking frequency						
Lane changing frequency						
Conversation with passengers						
Cell phone use						
Other activity use (e.g. Food/drink)						
Seat position						
Seat belt use						
Child restraint use						

- The recommended driving position is the 10/2 o'clock hand alignment
- However drivers often deviate from this position. Why?
 - Task complexity of driving a particular section of road
 - Drivers perception of the risk
- Use as an evaluation tool

Two Hands

- Two hands on the top half of the steering wheel
- Most control over vehicle in emergency situations

One hand

- One hand on the top half of the steering wheel
- Moderate control over vehicle in emergency situations

No hands

- No hands on the top half of the steering wheel
- Lowest control over vehicle in emergency situations

Key reference:

Walton, D., & Thomas, J.A. (2005). Naturalistic observations of driver hand positions. *Transportation Research Part F. Traffic Psychology and Behaviour, 8*, 229-238.

Hand positions

			Number of hands on the top half of the steering wheel					
			Zero		One		Two	
		N	%	AR ^a	%	AR ^a	%	AR ^a
Individual Fac	Individual Factors							
	Male	1225	18%	0.2	64%	8.3	19%	-9.6
Gender	Female	828	17%	-0.2	45%	-8.3	38%	9.6
	Total	2053						
	Under 60 years	592	33%	3.22	48%	2.41	19%	-6.32
Age	60 years and over	126	18%	-3.22	37%	-2.41	45%	6.32
	Total	718						
Vehicle Facto	rs							
	Car	578	27%	0.6	49%	2.3	24%	-3.1
Vehicle type	SUV	618	25%	-0.6	42%	-2.3	32%	3.1
	Total	1196						
Environmenta	Environmental Factors							
Speed zone	50kph	1161	25%	-0.1	55%	4.3	20%	-4.8
	100kph	3643	25%	0.1	48%	-4.3	27%	4.8
	Total	4804						
Lanes	2-lane highway	3214	26%	4.2	48%	0.2	26%	-4.2
	6-lane motorway	429	17%	-4.2	48%	-0.2	36%	4.2
	Total	3643						

(a) Adjusted residuals (AR) over 2 indicate a significant finding and are highlighted in bold.

Examined driver hand positions over time

- Matched driver hand position within drivers at two points on SH1 that were 10km apart
- 42% changed hand positions
- No evidence of habit or fatigue effects

Percent
2.2
18.3
57.6
20.1
1.7

Self-report regarding hand positions

Item	N	Mean	Median	Mode	SD
Actual observed hand positions		1.02	1	1	0.74
Your hand positions when relaxed		1.27	1	1	0.69
The most natural hand positions when driving		1.51	2	2	0.65
Your typical hand positions when driving		1.71	2	2	0.50
Your typical hand positions when tense		1.92	2	2	0.32
The hand positions that give you most control over the vehicle		1.94	2	2	0.24

Temporal and Contextual Reliability

			Numb	Number of hands on the top half of the steering wheel						
			Zero		One		Two			
		N	%	AR	%	AR	%	AR		
Tempora	l reliability									
Day 1		324	23%	0.32	47%	0.78	30%	-1.12		
Day 2		344	22%	-0.32	44%	-0.78	34%	1.12		
	Total	668								
Contextual reliability										
Northbound		331	22%	-0.15	45%	-0.49	33%	0.66		
Southbound		337	22%	0.15	46%	0.49	32%	-0.66		
	Total	668								

Inter-rater reliability

- 92-97%
- Higher in slow speed zones

Improvements in the method:

- Observer elevation
- Typically at least 2 hours of data collection
- Use of naked eye preferable (over technology options)
- Use of paper and pen (over Dictaphone)
- Making rules to deal with:
 - A platoon of vehicles
 - Drivers shifting their hand positions
 - Hands loose vs hands gripping the steering wheel

Road Delineation ExperimentConditions:

- Bright vs faded linemarkings
- Wet vs dry delineation

Key driver behaviour measures:

- Speed and Headway (TIRTL)
- "Hands-on" (with observers)

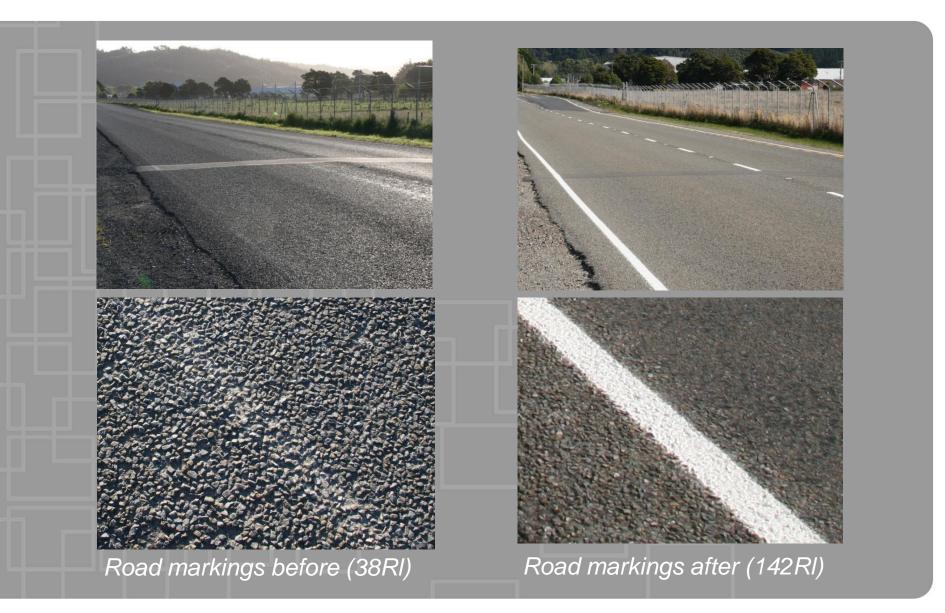
Methodological issues

- Night measurement
- Wet condition measurement

Key question:

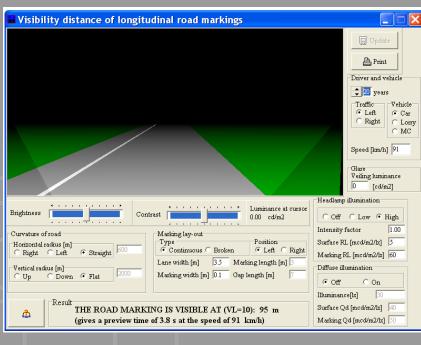
Can improved markings demonstrate a shift to the pattern of driving seen in dry, daytime conditions?

Recent experiment: Application to delineation



Hand-held infrared spotlight

Methodological Issues: Adapting to Night Conditions



Brighter road marking intervention

Average sight distance improvement of 1.6 seconds (or about 35m)

		Alexander Rd (vehicles travelling at 71kph)					
		Before upg	rade (38RI)	After upgrade (142RI)			
Headlight condition	Driver age group	Preview Sight time (s) distance (m)		Preview time (s)	Sight distance (m)		
	16-25	2.8	65	4.1	91		
	26-35	2.8	62	4.1	90		
	36-45	2.8	62	4.0	89		
Dipped headlights	46-55	2.7	60	4.0	88		
	56-65	2.6	58	3.9	86		
	66-75	2.3	51	3.6	79		
	76-85	1.8	39	2.9	64		
	16-25	3.1	68	5.3	117		
	26-35	3.0	66	5.1	114		
Full headlights	36-45	2.9	65	5.0	112		
	46-55	2.8	62	4.8	107		
	56-65	2.7	60	4.6	102		
	66-75	2.3	52	4.0	89		
	76-85	1.8	39	3.0	66		

Hand positions at night

- Before and after results detected a change towards more comfortable driving conditions.
- 37% improvement towards daytime driving conditions

Speed and headway at night: No detectable statistical change

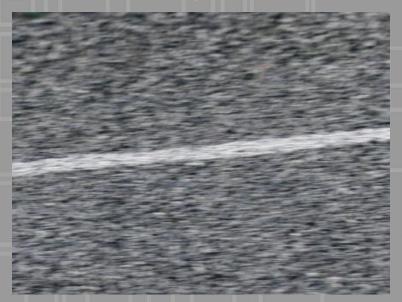
Measure sensitivity

- "Hands-on" may be a more sensitive measure (relative to speed or headway)
- For example, speed externally monitored

			Before upgrade (38RI)		After upgrade (142RI)		
		N	%	AR ^a	%	AR ^a	
	Other	146	69%	-2.07	84%	2.07	
Hand Position	Two hands	113	31%	2.07	19%	-2.07	
	Total	259					
		N	Mean	SD	Mean	SD	
Speed		281	75.50	9.61	74.20	9.63	
Headway		29	2.00	0.87	1.90	0.64	

Wet Conditions

- Site location 100kph speed zone (SH2)
- Rainfall was very heavy (10.2mm/hr)
- Limitations in wet conditions
 - Inter-rater reliability was lower in wet conditions (84.5%)
 - Wet night condition was not tested (night vision limitation)
 - Headway measurement accuracy issues
 - Dictaphones used to record instead of pen and paper



Wet weather delineation presents a challenging driving environment:

- 53% of drivers with two hands on the top half of the steering wheel
- Average vehicle speeds were significantly lower (by about 9kph)
- Wet delineation is the most difficult driving environment where roadmarking solutions could play a critical role

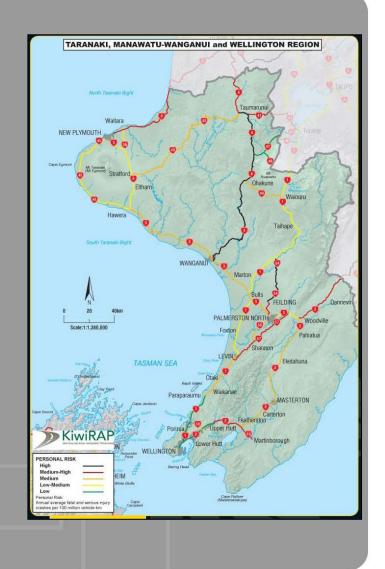
Dry conditions

Wet conditions

Evaluation of any before-after design

Especially any visual or tactile environmental feature in the road corridor, including:

- Perceptual countermeasures e.g.
 roadmarking narrowing and other
 perceptual speed interventions
- Alterations to sight lines e.g. edge marker posts or cats eyes
- VMS Signs e.g. effectiveness of safety messages



Transverse road markings – Before and after Andrew Martindale

- Map the intuitive performance of different sections of the road network using hands-on
- Develop a baseline profile of "typical" behaviour
- Ability to prioritise problem areas:
 - Sections where actual risk is high (e.g. KiwiRAP or crash prediction models) AND...
 - Drivers are more relaxed than typical

	Actual risk			
Percieved risk	Low	High		
Low	>	×		
High		\		

Intelligent Speed Adaptation (ISA)

Research Purpose

- To encourage safe speeds and reduce crashes
- To investigate the issues associated with the deployment of ISA in a New Zealand context

Potential Benefits

- e.g. 8.4% reduction in fatalities and a 5.9% reduction in injuries (NSW Centre for Road Safety)
- Noise pollution and emissions reductions

Research Team

- MWH New Zealand Ltd, Opus, Institute for Transport Studies, University of Leeds
- NZTA

Field Trial

 Advisory ISA system to asses potential user compliance with ISA and the impact of ISA on driving

An example of an ISA device.

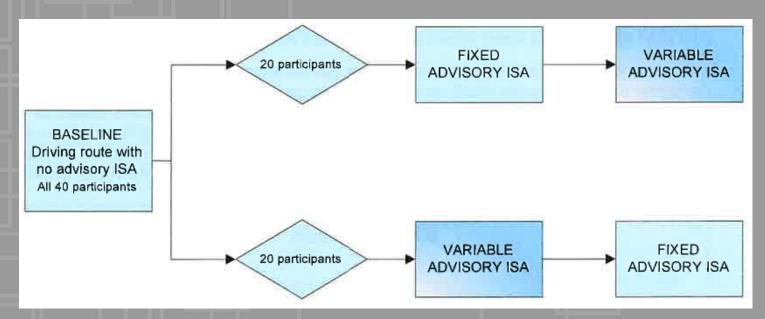
ISA Typologies

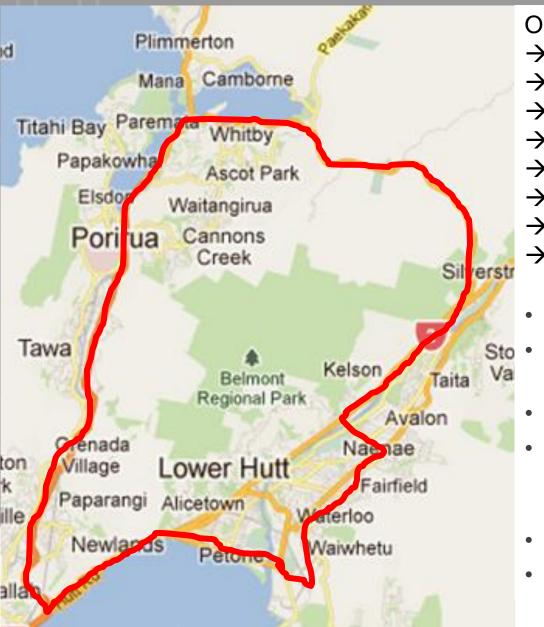
 Advisory: displaying the speed limit and reminding the driver of changes in the speed limit

ISA Speed Limit Information

- Fixed: The vehicle is informed of the posted speed
- Variable: The vehicle is additionally informed of where a lower speed limit or advice is recommended (e.g. advisory curves)

How does it work?


 A portable ISA device can be plugged into your vehicle to provide real-time visual and audio feedback (beeps).


- The field trial looks at the impact of ISA on driving behaviour and the perceptions of users
- Test subjects will complete a questionnaire and then drive a predetermined route three times, with further questions to be answered following each run

 Driver's speed profiles are recorded and sent back to the Smart Car Technologies server

Proposed Survey Route

Opus Central Labs in Hutt Park Rd

- → Gracefield Rd
- → Bell Rd → Waiwhetu Rd
- → Naenae Rd → Daysh St
- → Fairway Dr → SH2
- → SH58 → SH1
- → SH2 → The Esplanade
- → Waione St → Seaview Rd
- → Parkside Rd → Opus Central Labs
- 56km long
- Mixture of roads, urban and rural, from local roads to motorway
- 10 speed limit changes
- 23 advisory speed limit signs, including one urban advisory on Waiwhetu Rd
- 2 rail crossings
- Speed humps on Bell Rd

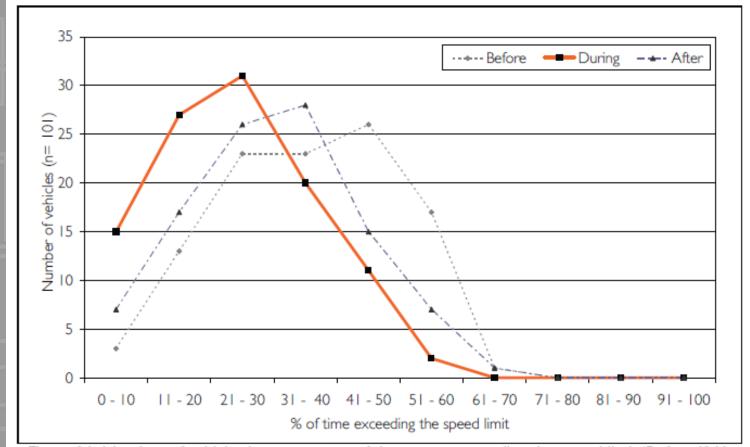


Figure 21: Number of vehicles by percentage of time spent exceeding the speed limit 'Before ISA', 'During ISA' and 'After ISA'

Source:

http://www.rta.nsw.gov.au/roadsafety/downloads/isa trial/isa trial final results.pdf

Overview

- Hand positions
 - Reliable naturalistic measure
 - Examines how drivers naturally perceive adapt to different driving conditions
- Potentially more sensitive than speed or headway
- Combined measurement provides a stronger monitoring tool to examine design improvements
- Driver feedback systems (e.g. ISA Trials)
 - Technology to alert drivers to real-time changes in the driving environment
 - Possibility of rewarding speed-compliant behaviour

